domingo, 22 de abril de 2012

Hepatitis E Virus Infection among Solid Organ Transplant Recipients, the Netherlands - Vol. 18 No. 5 - May 2012 - Emerging Infectious Disease journal - CDC

full-text:
Hepatitis E Virus Infection among Solid Organ Transplant Recipients, the Netherlands - Vol. 18 No. 5 - May 2012 - Emerging Infectious Disease journal - CDC



Volume 18, Number 5—May 2012

Dispatch

Hepatitis E Virus Infection among Solid Organ Transplant Recipients, the Netherlands

Suzan D. Pas, Rob A. de Man, Claudia Mulders, Aggie H.M.M. Balk, Peter T.W. van Hal, Willem Weimar, Marion P.G. Koopmans, Albert D.M.E. Osterhaus, and Annemiek A. van der EijkComments to Author
Author affiliations: Erasmus Medical Center, Rotterdam, the Netherlands
Suggested citation for this article

Abstract

We screened 1,200 living heart, lung, liver, and kidney transplant recipients for hepatitis E virus infection by reverse transcription PCR. In 12 (1%) patients, hepatitis E virus infection was identified; in 11 patients, chronic infection developed. This immunocompromised population is at risk for hepatitis E virus infection.
Hepatitis E virus (HEV) can cause acute or chronic infection in humans. Four genotypes have been identified in humans. HEV genotype 3 predominantly infects pigs and deer, but is also recognized as a zoonotic agent. As awareness increases, more reports of HEV infection among humans, especially immunocompromised persons, have been published (1,2).
Analysis of exposure histories of persons with HEV genotype 3 infections has demonstrated its underdiagnosis, and a source was not identified for most cases (3). Because HEV has been reported as a cause of liver disease in solid organ transplant (SOT) recipients (4), we screened all living recipients of SOTs during 2000–2011 at Erasmus Medical Center, the largest SOT center in the Netherlands, for HEV RNA. This study was designed to identify SOT recipients with acute or chronic HEV infection.

The Study

A cross-sectional study was performed of all living adult SOT recipients for whom serum or EDTA-plasma samples were available in the Erasmus Medical Center biobank (stored at –20°C and –80°C, respectively, and collected during previous routine visits to the outpatient clinic; complete methods are described in detail in the Technical Appendix Adobe PDF file [PDF - 854 KB - 3 pages]). Some recipients eventually had been referred to peripheral hospitals. A Laboratory Information Management System database search was performed for availability of the most recent follow-up sample. Thirty-nine HEV RNA–positive samples in the center’s biobank from non-SOT patients were genotyped and used as reference for phylogenetic analysis. Samples were screened for HEV RNA by using real-time reverse transcription PCR (RT-PCR) (5) with primers detecting all 4 genotypes and validated according to International Standards Organization guidelines 9001 and 15189 (www.iso.org/iso/search.htmExternal Web Site Icon). HEV IgM and IgG were detected by using the PE2 HEV-IgM and IgG ELISA (Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing, People’s Republic of China). A case of HEV infection was defined by the following criteria: an HEV RNA–positive sample, confirmed either by presence of HEV IgM or IgG or HEV RNA in sequential samples. Chronic infection was diagnosed by retrospective testing of stored samples and defined as HEV RNA positive for >6 months. We retrospectively tested samples from HEV RNA–positive patients so the antibody kinetics and viremia levels could be studied. For calculating phylogenetic relationships, HEV open reading frame (ORF) 1 sequences were generated with primer set MJ-C (6). All viral sequences were deposited into GenBank (accession nos. JQ015399–JQ015448).

No hay comentarios:

Publicar un comentario