Co-Circulation and Persistence of Genetically Distinct Saffold Viruses, Denmark - - Emerging Infectious Disease journal - CDC
Letter
Co-Circulation and Persistence of Genetically Distinct Saffold Viruses, Denmark
Article Contents
The first SAFV infection in Denmark was recorded in 2009 (6). To elucidate the molecular epidemiology of SAFV, we performed a 3-year surveillance study of SAFV in Denmark. During 2009–2011, we tested 1,393 fecal samples from 454 children. Surveillance included collection of fecal samples from children at 6, 10, and 15 months of age; additional fecal samples were collected when the children had gastroenteritis. Most of the SAFV-positive samples reported in this study were obtained from a randomized trial in the pediatric department of University Hospital of Holbaek (Holbaek) on the effect of probiotic therapy on the incidence of infection during early childhood (M. Gyhrs, unpub. data). The study was approved by the local ethics committee; Den Regionale Videnskabsetiske Komité for Region Sjaelland, Denmark.
Nucleic acids were extracted from 200-µL fecal suspension (10% in phosphate-buffered saline) by using the Cobas AmpliPrep Total Nucleic Acid Isolation Kit (Roche Diagnostics, Ltd., Mannheim, Germany) on the MagnaPure LC instrument (Roche Diagnostics). We used 5 µL of extracted nucleic acid for reverse transcription PCR (RT-PCR) (total volume 25 µL) using the OneStep RT-PCR Kit (QIAGEN, Hilden, Germany). The samples were tested for SAFV by using real-time RT-PCR primer/probe, and all positive samples were genotyped by partial sequencing of the viral protein (VP) 1 gene (6). Overall, 38 (2.8%) of the clinical samples were positive for SAFV (Technical Appendix
To determine the evolutionary history of strains of SAFV identified in persons in Denmark, we combined the VP1 sequences collected here with all others available on GenBank. We aligned sequences as described using MUSCLE software (7), then checked the alignments using manual calculations. We performed phylogenetic analysis using the maximum likelihood method as described in PhyML 3.0 (8), on the basis of the best-fit GTR+Γ nucleotide model as determined by jModelTest (9). Phylogenetic robustness was determined by using 1,000 bootstrap replicates.
Our phylogenetic analysis places the strains isolated in Denmark within the SAFV-2 group (Technical Appendix
We next measured the selection pressures acting on these lineages through the mean number of nonsynonymous (dN) to synonymous (dS) nucleotide substitutions per site using the single-likelihood ancestor counting, fixed effects likelihood, and random effects likelihood methods available in the Datamonkey HyPhy package as described (10). The DK-A and DK-B groups differed significantly in selection pressure: DK-A, dN/dS ratio = 0.195 (95% CI 0.105–0.328); and DK-B, dN/dS ratio = 0.033 (95% CI 0.015–0.062), which indicates stronger purifying selection on the DK-B group. Ancestral state reconstruction, performed by using Datamonkey (10), revealed that the ancestors of DK-A and DK-B differ only at aa 135 in VP1: Val in DK-A and Ala in DK-B. Notably, aa 135 was positively selected in DK-A (random effects likelihood: dN/dS = 3.53, Bayes factor = 50: fixed effects likelihood: dN/dS >>1; cutoff p = 0.1), with more tentative evidence for adaptation at aa 135 in DK-B: dN/dS ratio >>1 by using fixed effects likelihood (p = 0.2). The functions of aa 135 in VP1, and what it means for the fitness of SAFV, merit further consideration.
We conclude that SAFV-2 has been introduced into Denmark in 3 groups: DK-A, viral strain 115883 and strains of DK-B reported in Denmark; all have recently co-circulated in this country. We have demonstrated the entry and persistence of 3 phylogenetically distinct lineages of SAFV-2 in Denmark. That SAFV-2 can persist between years suggests that it might be common, yet underreported, in Denmark, which provides the opportunity for spread to additional localities. Increased awareness of improved laboratory protocols for SAFV detection is needed among clinicians in Denmark and neighboring countries.
References
- Jones MS, Lukashov VV, Ganac RD, Schnurr DP. Discovery of a novel human picornavirus in a stool sample from a pediatric patient presenting with fever of unknown origin. J Clin Microbiol. 2007;45:2144–50. DOI
PubMed
- Abed Y, Boivin G. New Saffold cardioviruses in 3 children, Canada. Emerg Infect Dis. 2008;14:834–6.PubMed
- Drexler JF, Luna LK, Stöcker A, Almeida PS, Ribeiro TC, Petersen N, Circulation of 3 lineages of a novel Saffold cardiovirus in humans. Emerg Infect Dis. 2008;14:1398–405. DOI
PubMed
- Blinkova O, Kapoor A, Victoria J, Jones M, Wolfe N, Naeem A, Cardioviruses are genetically diverse and cause common enteric infections in South Asian children. J Virol. 2009;83:4631–41. DOI
PubMed
- Zoll J, Erkens Hulshof S, Lanke K, Verduyn Lunel F, Melchers WJ, Schoondermark-van de Ven E, Saffold virus, a human Theiler's-like cardiovirus, is ubiquitous and causes infection early in life. PLoS Pathog. 2009;5:e1000416. DOI
PubMed
- Nielsen ACY, Böttiger B, Banner J, Hoffmann T, Nielsen LP. Serious invasive Saffold virus infections in children, 2009. Emerg Infect Dis. 2012;18:7–12. DOI
PubMed
- Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. DOI
PubMed
- Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. DOI
PubMed
- Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:1253–6. DOI
PubMed
- Delport W, Poon AF, Frost SD, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010;26:2455–7. DOI
PubMed
No hay comentarios:
Publicar un comentario