lunes, 4 de marzo de 2013

Vibrio cholerae Non-O1, Non-O139 Serogroups and Cholera-like Diarrhea, Kolkata, India - Vol. 19 No. 3 - March 2013 - Emerging Infectious Disease journal - CDC

full-text ►
Vibrio cholerae Non-O1, Non-O139 Serogroups and Cholera-like Diarrhea, Kolkata, India - Vol. 19 No. 3 - March 2013 - Emerging Infectious Disease journal - CDC
 EID cover artwork EID banner
Table of Contents
Volume 19, Number 3– March 2013


Volume 19, Number 3—March 2013



Dispatch



Vibrio cholerae Non-O1, Non-O139 Serogroups and Cholera-like Diarrhea, Kolkata, India




Devarati Dutta1, Goutam Chowdhury1, Gururaja P. Pazhani, Sucharita Guin, Sanjucta Dutta, Santanu Ghosh, K. Rajendran, Ranjan K. Nandy, Asish K. Mukhopadhyay, Mihir K. Bhattacharya, Utpala Mitra, Yoshifumi Takeda, G. Balakrish Nair, and Thandavarayan RamamurthyComments to Author 


Author affiliations: Author affiliations: National Institute of Cholera and Enteric Diseases, Kolkata, India (D. Dutta, G. Chowdhury, G. P. Pazhani, S. Guin, S. Dutta, S. Ghosh, K. Rajendran, R.K. Nandy, A.K. Mukhopadhyay, M.K. Bhattacharya, U. Mitra, Y. Takeda, T. Ramamurthy); Translational Health Science and Technology Institute, Haryana, India (G.B. Nair)

Suggested citation for this article


Abstract


We identified 281 Vibrio cholerae non-O1, non-O139 strains from patients with diarrhea in Kolkata, India. Cholera-like diarrhea was the major symptom (66.0%); some patients (20.3%) had severe dehydration. These strains lacked the ctxA gene but many had hlyA, rtxA, and rtxC genes. Pulsed-field gel electrophoresis showed no genetic link among strains.

Vibrio cholerae O1 has been responsible for several cholera outbreaks in developing countries. During 1992, a novel serogroup, O139, caused cholera outbreaks in India and other countries in Asia (1). These events have shown that serogroups other than O1 have major epidemiologic roles in cholera. V. cholerae O1 and O139 serogroups produce cholera toxin (CT), a critical virulence factor and express toxin coregulated pilus (TCP), which are responsible for secretory diarrhea and intestinal colonization, respectively. Serogroups other than O1 and O139 are designated as V. cholerae non-O1, non-O139, or nonagglutinating vibrios (NAGs); such serogroups have >200 somatic (O) antigens (2) and mostly lack CT- and TCP-coding genes.
Toxigenic and nontoxigenic NAGs have caused several diarrhea outbreaks in India and other countries, including Haiti (36). In non–CT-producing NAGs, other virulence factors such as heat-stable enterotoxin (Stn), hemolysin (HlyA), repeat in toxin (RTX), and type 3 secretion systems (TTSS) have major roles in causing infections (7). In this study, we analyzed clinical characteristics of hospitalized patients with diarrhea infected with NAGs and screened strains for antimicrobial drug susceptibility, virulence genes, and genetic relatedness.


The Study



During 2002–2010, a total of 12,719 fecal specimens were collected, which represented every fifth hospitalized diarrhea patient at the Infectious Diseases Hospital in Kolkata and all children at the outpatient unit at B.C. Roy Memorial Hospital for Children in Kolkata. Fecal specimens were screened for V. cholerae and other enteric pathogens as described (8). NAGs were serotyped by using 206 polyclonal O antisera according to the protocol developed at the National Institute of Infectious Diseases (Tokyo, Japan) (2).
Antimicrobial drug susceptibility assays were performed by using the disk diffusion method and commercially available disks (Becton Dickinson, Sparks Glencoe, MD, USA), according to standards of the Clinical and Laboratory Standards Institute (9). Because these standards do not include interpretive criteria for V. cholerae, breakpoints for Enterobacteriaceae were adopted. Escherichia coli ATCC 25922 was used as a quality-control strain.
Simplex and multiplex PCRs were performed by using published methods specific for ctxA, tcpA, rtxA, rtxC, stn, and hlyA genes (classical/El Tor) and the TTSS-coding genes (7). Pulsed-field gel electrophoresis was performed according to the PulseNet standardized protocol for V. cholerae (www.pulsenetinternational.org/SiteCollectionDocuments/pfge/5.71_2009_PNetStandProtVcholerae.pdf Adobe PDF file. Gel Compare II software (Applied Maths NV, Sint-Martens-Latem, Belgium) was used for comparison of electrophoresis patterns. This software uses a Dice similarity index and contains an unweighted pair group with arithmetic mean method.

No hay comentarios:

Publicar un comentario