sábado, 1 de marzo de 2014

Ahead of Print -Large Outbreak of Cryptosporidium hominis Infection Transmitted through the Public Water Supply, Sweden - Volume 20, Number 4—April 2014 - Emerging Infectious Disease journal - CDC

full-text ►

Ahead of Print -Large Outbreak of Cryptosporidium hominis Infection Transmitted through the Public Water Supply, Sweden - Volume 20, Number 4—April 2014 - Emerging Infectious Disease journal - CDC





Volume 20, Number 4—April 2014

Research

Large Outbreak of Cryptosporidium hominis Infection Transmitted through the Public Water Supply, Sweden

Micael Widerström, Caroline Schönning, Mikael Lilja, Marianne Lebbad, Thomas Ljung, Görel Allestam, Martin Ferm, Britta Björkholm, Anette Hansen, Jari Hiltula, Jonas Långmark, Margareta Löfdahl, Maria Omberg, Christina Reuterwall, Eva Samuelsson, Katarina Widgren, Anders Wallensten, and Johan Lindh
Author affiliations: Umeå University, Umeå, Sweden (M. Widerström, M. Lilja, M. Ferm C. Reuterwall, E. Samuelsson);Jämtland County Council, Östersund, Sweden (M. Widerström, M. Omberg)Public Health Agency of Sweden, Stockholm, Sweden (C. Schönning, M. Lebbad, G. Allestam, B. Björkholm, A. Hansen, J. Långmark, M. Löfdahl, K. Widgren, A. Wallensten, J. Lindh)Mid Sweden University, Östersund, (T. Ljung,)Östersund Municipality, Östersund (J. Hitula); and Karolinska Institutet, Stockholm (J. Lindh)

Abstract

In November 2010, ≈27,000 (≈45%) inhabitants of Östersund, Sweden, were affected by a waterborne outbreak of cryptosporidiosis. The outbreak was characterized by a rapid onset and high attack rate, especially among young and middle-aged persons. Young age, number of infected family members, amount of water consumed daily, and gluten intolerance were identified as risk factors for acquiring cryptosporidiosis. Also, chronic intestinal disease and young age were significantly associated with prolonged diarrhea. Identification of Cryptosporidium hominis subtype IbA10G2 in human and environmental samples and consistently low numbers of oocysts in drinking water confirmed insufficient reduction of parasites by the municipal water treatment plant. The current outbreak shows that use of inadequate microbial barriers at water treatment plants can have serious consequences for public health.
Protozoan parasites of the genus Cryptosporidium can cause gastrointestinal illness in humans and animals (1). Twenty-six species and >60 genotypes have been identified (2). C. parvum andC. hominis are the most prevalent species that infect humans (1,3). Cryptosporidiosis is transmitted mainly by the fecal–oral route, usually through oocyst-contaminated water or food or by direct contact with an infected person or animal (2). Infectivity is dose dependent and certain subtypes are apparently more virulent, requiring only a few oocysts to establish infection (1,4). In healthy persons, gastrointestinal symptoms usually resolve spontaneously within 1–2 weeks, although asymptomatic carriage can occur (2). Nonetheless, in immunocompromised patients, severe life-threatening watery diarrhea can develop (2). Information is limited regarding the long-term effects of Cryptosporidium infection (3,5,6).
The global incidence of cryptosporidiosis is largely unknown, although the disease was recently identified as one of the major causes of moderate to severe diarrhea in children <5 years of age in low-income countries (7). In Sweden, cryptosporidiosis has been a notifiable disease since 2004, and ≈150 cases (≈1.7/100,000 population/year) were reported annually until 2009. However, cryptosporidiosis is probably underreported, mainly because sampling from patients with gastrointestinal symptoms and requests for diagnostic tests are insufficient (3,8).
Because of some inherent characteristics of the pathogen, Cryptosporidium infection has critical public health implications for drinking water and recreational waters. The oocysts are excreted in large numbers in feces, can survive for months in the environment (5), and are resistant to the concentrations of chlorine commonly used to treat drinking water (9). The first reported outbreak of waterborne human cryptosporidiosis occurred in the United States in 1984 (10), and since then, numerous outbreaks involving up to hundreds of persons have been identified in several parts of the world (11,12). However, only a few very large outbreaks have been documented (1315); the most extensive occurred in 1993 in Milwaukee, Wisconsin, USA, in which ≈400,000 persons were infected with Cryptosporidium oocysts by drinking water from a water treatment plant (WTP) (14). Cryptosporidium spp. are the predominant protozoan parasites causing waterborne outbreaks worldwide (11). In 2012, an increase inCryptosporidium infections, particularly by C. hominis IbA10G2, was reported in Europe (16).
In Sweden, only 1 drinking water outbreak involving Cryptosporidium has been recognized (Y. Andersson, pers. comm.), and a C. parvum outbreak associated with fecal contamination of a public swimming pool occurred in 2002 and affected ≈1,000 persons (17). A study ofCryptosporidium species and subtypes isolated from samples from 194 patients in Sweden during 2006–2008 identified 111 C. parvum infections and 65 C. hominis infections. Most patients with C. hominis infection had been infected abroad, and only 3 were considered to have sporadic domestic infections (3). A recent investigation of Cryptosporidium in raw water from 7 large WTPs in Sweden (not including the WTP of interest in the present study) identified 23 (11.5%) of 200 positive samples containing 1–30 oocysts/10 L, although neither species nor subtypes were analyzed (18).
Figure 1
Thumbnail of Map of Lake Storsjön, showing water currents (arrows) and locations of wastewater treatment plant, water treatment plant, and contaminating stream after Cryptosporidium infection outbreak, Östersund, Sweden, 2010–2011.
Figure 1. . Map of Lake Storsjön, showing water currents (arrows) and locations of wastewater treatment plant, water treatment plant, and contaminating stream after Cryptosporidiuminfection outbreak, Östersund, Sweden, 2010–2011.
The city of Östersund is located in central Sweden and has a population of ≈60,000. The major WTP in Östersund (WTP-Ö) draws surface water from nearby Lake Storsjön and supplies drinking water to ≈51,000 of the city’s inhabitants. At the time of the onset of the outbreak reported here, the purification process at WTP-Ö included pre-ozonation, flocculation, and sedimentation, followed by rapid sand filtering and chloramination. WTP-Ö is situated 4 km upstream from the major wastewater treatment plant (WWTP-Ö) to ensure that the drinking water intake will not be affected by the wastewater outlet (Figure 1).
In late November 2010, the County Medical Office in Östersund received reports from several employers that 10%–20% of employees had gastroenteritis. The office advised that patients with acute gastroenteritis be tested for bacterial, viral, and protozoan pathogens. Among 20 patients from whom samples were obtained, 14 cases of cryptosporidiosis were detected on November 26. The local health advice line received numerous calls from persons with gastroenteritis, most of whom lived within the municipality (19). These facts indicated that the outbreak could be traced to the drinking water, and thus a boil-water advisory was issued for the municipality on November 26. This study describes the outbreak investigation and outlines the extent of the outbreak, clinical characteristics of persons infected, and risk factors for acquiring cryptosporidiosis.


Acknowledgments

We thank Joyce Eriksson, Tomas Nilsson, Jessica Nääs, and Lill Welinder for their excellent technical assistance. We also thank Johan Wiström for invaluable intellectual comments.
This work was supported by grants from the Research and Development Unit, Jämtland County Council, Sweden, and the Medical Faculty of Umeå University, Umeå, Sweden.

References

  1. Chalmers RMKatzer FLooking for Cryptosporidium: the application of advances in detection and diagnosis. Trends Parasitol2013;29:23751 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  2. Bouzid MHunter PRChalmers RMTyler KMCryptosporidium pathogenicity and virulence. Clin Microbiol Rev2013;26:11534DOIExternal Web Site IconPubMedExternal Web Site Icon
  3. Insulander MSilverlas CLebbad MKarlsson LMattsson JGSvenungsson BMolecular epidemiology and clinical manifestations of human cryptosporidiosis in Sweden.Epidemiol Infect2013;141:100920DOIExternal Web Site IconPubMedExternal Web Site Icon
  4. Xiao LMolecular epidemiology of cryptosporidiosis: an update. Exp Parasitol.2010;124:809 and. DOIExternal Web Site IconPubMedExternal Web Site Icon
  5. Davies APChalmers RMCryptosporidiosis. BMJ2009;339:b4168DOIExternal Web Site IconPubMedExternal Web Site Icon
  6. Hunter PRHughes SWoodhouse SRaj NSyed QChalmers RMHealth sequelae of human cryptosporidiosis in immunocompetent patients. Clin Infect Dis2004;39:50410 .DOIExternal Web Site IconPubMedExternal Web Site Icon
  7. Kotloff KLNataro JPBlackwelder WCNasrin DFarag THPanchalingam SBurden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet.2013;382:20922 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  8. Robertson LJChalmers RMFoodborne cryptosporidiosis: is there really more in Nordic countries? Trends Parasitol2013;29:39DOIExternal Web Site IconPubMedExternal Web Site Icon
  9. Chalmers RMGiles MZoonotic cryptosporidiosis in the UK—challenges for control. J Appl Microbiol2010;109:148797 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  10. D’Antonio RGWinn RETaylor JPGustafson TLCurrent WLRhodes MMA waterborne outbreak of cryptosporidiosis in normal hosts. Ann Intern Med1985;103:8868DOIExternal Web Site IconPubMedExternal Web Site Icon
  11. Baldursson SKaranis PWaterborne transmission of protozoan parasites: review of worldwide outbreaks—an update 2004–2010. Water Res2011;45:660314DOIExternal Web Site IconPubMedExternal Web Site Icon
  12. Karanis PKourenti CSmith HWaterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. J Water Health2007;5:138DOIExternal Web Site IconPubMedExternal Web Site Icon
  13. Hayes EBMatte TDO’Brien TRMcKinley TWLogsdon GSRose JBLarge community outbreak of cryptosporidiosis due to contamination of a filtered public water supply. N Engl J Med1989;320:13726DOIExternal Web Site IconPubMedExternal Web Site Icon
  14. Mac Kenzie WRHoxie NJProctor MEGradus MSBlair KAPeterson DEA massive outbreak in Milwaukee of cryptosporidium infection transmitted through the public water supply. N Engl J Med1994;331:1617DOIExternal Web Site IconPubMedExternal Web Site Icon
  15. McLauchlin JAmar CPedraza-Diaz SNichols GLMolecular epidemiological analysis ofCryptosporidium spp. in the United Kingdom: results of genotyping Cryptosporidium spp. in 1,705 fecal samples from humans and 105 fecal samples from livestock animals. J Clin Microbiol2000;38:398490 .PubMedExternal Web Site Icon
  16. Fournet NDeege MPUrbanus ATNichols GRosner BMChalmers RMSimultaneous increase of Cryptosporidium infections in the Netherlands, the United Kingdom and Germany in late summer season, 2012. Euro Surveill2013;18:203488490 .PubMedExternal Web Site Icon
  17. Insulander MLebbad MStenstrom TASvenungsson BAn outbreak of cryptosporidiosis associated with exposure to swimming pool water. Scand J Infect Dis2005;37:35460DOIExternal Web Site IconPubMedExternal Web Site Icon
  18. Swedish Institute for Communicable Disease ControlGiardia and Cryptosporidium in surface water from Swedish water works [in Swedish, English summary]. [cited Feb 7].http://folkhalsomyndigheten.se/publicerat-material/publikationer/Giardia-och-Cryptosporidium-i-svenska-ytvattentakter/External Web Site Icon
  19. Andersson TBjelkmar PHulth ALindh JStenmark SWiderstrom MSyndromic surveillance for local outbreak detection and awareness: evaluating outbreak signals of acute gastroenteritis in telephone triage, Web-based queries and over-the-counter pharmacy sales. Epidemiol Infect2014;142:30313DOIExternal Web Site IconPubMedExternal Web Site Icon
  20. Casemore DPACP Broadsheet 128: June 1991. Laboratory methods for diagnosing cryptosporidiosis. J Clin Pathol1991;44:44551DOIExternal Web Site IconPubMedExternal Web Site Icon
  21. Xiao LBern CLimor JSulaiman IRoberts JCheckley WIdentification of 5 types ofCryptosporidium parasites in children in Lima, Peru. J Infect Dis2001;183:4927DOIExternal Web Site IconPubMedExternal Web Site Icon
  22. Alves MXiao LSulaiman ILal AAMatos OAntunes FSubgenotype analysis ofCryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. J Clin Microbiol2003;41:27447DOIExternal Web Site IconPubMedExternal Web Site Icon
  23. Loveridge PCooper DElliot AJHarris JGray JLarge SVomiting calls to NHS Direct provide an early warning of norovirus outbreaks in hospitals. J Hosp Infect.2010;74:38593DOIExternal Web Site IconPubMedExternal Web Site Icon
  24. Keller MBlench MTolentino HFreifeld CCMandl KDMawudeku AUse of unstructured event-based reports for global infectious disease surveillance. Emerg Infect Dis.2009;15:68995DOIExternal Web Site IconPubMedExternal Web Site Icon
  25. Public Health Laboratory Study GroupCryptosporidiosis in England and Wales: prevalence and clinical and epidemiological features. BMJ1990;300:7747DOIExternal Web Site IconPubMedExternal Web Site Icon
  26. Mason BWChalmers RMCarnicer-Pont DCasemore DPCryptosporidium hominisoutbreak in north-west Wales associated with low oocyst counts in treated drinking water. J Water Health2010;8:299310DOIExternal Web Site IconPubMedExternal Web Site Icon
  27. Yoder JSBeach MJCryptosporidium surveillance and risk factors in the United States.Exp Parasitol2010;124:319DOIExternal Web Site IconPubMedExternal Web Site Icon
  28. Manthey MWRoss ABSoergel KHCryptosporidiosis and inflammatory bowel disease. Experience from the Milwaukee outbreak. Dig Dis Sci1997;42:15806DOIExternal Web Site IconPubMedExternal Web Site Icon
  29. Savioli LSmith HThompson AGiardia and Cryptosporidium join the ‘Neglected Diseases Initiative.’Trends Parasitol2006;22:2038DOIExternal Web Site IconPubMedExternal Web Site Icon
  30. Chalmers RMHadfield SJJackson CJElwin KXiao LHunter PGeographic linkage and variation in Cryptosporidium hominis. Emerg Infect Dis2008;14:4968DOIExternal Web Site IconPubMedExternal Web Site Icon
  31. Li NXiao LCama VOrtega YGilman RGuo MGenetic recombination andCryptosporidium hominis virulent subtype IbA10G2. Emerg Infect Dis2013;19:157382DOIExternal Web Site IconPubMedExternal Web Site Icon
  32. Waldron LSDimeski BBeggs PJFerrari BCPower MLMolecular epidemiology, spatiotemporal analysis, and ecology of sporadic human cryptosporidiosis in Australia.Appl Environ Microbiol2011;77:775765DOIExternal Web Site IconPubMedExternal Web Site Icon
  33. Zhou LSingh AJiang JXiao LMolecular surveillance of Cryptosporidium spp. in raw wastewater in Milwaukee: implications for understanding outbreak occurrence and transmission dynamics. J Clin Microbiol2003;41:52547DOIExternal Web Site IconPubMedExternal Web Site Icon
  34. Chalmers RMRobinson GElwin KHadfield SJThomas EWatkins JDetection ofCryptosporidium species and sources of contamination with Cryptosporidium hominisduring a waterborne outbreak in north west Wales. J Water Health2010;8:31125DOIExternal Web Site IconPubMedExternal Web Site Icon
  35. McDonald ACMac Kenzie WRAddiss DGGradus MSLinke GZembrowski E,Cryptosporidium parvum–specific antibody responses among children residing in Milwaukee during the 1993 waterborne outbreak. J Infect Dis2001;183:13739DOIExternal Web Site IconPubMedExternal Web Site Icon
  36. Borad AWard HHuman immune responses in cryptosporidiosis. Future Microbiol.2010;5:50719 and. DOIExternal Web Site IconPubMedExternal Web Site Icon
  37. Howe ADForster SMorton SMarshall ROsborn KSWright PCryptosporidium oocysts in a water supply associated with a cryptosporidiosis outbreak. Emerg Infect Dis.2002;8:61924DOIExternal Web Site IconPubMedExternal Web Site Icon
  38. Ongerth JEThe concentration of Cryptosporidium and Giardia in water—the role and importance of recovery efficiency. Water Res2013;47:247988DOIExternal Web Site IconPubMedExternal Web Site Icon
  39. Causer LMHandzel TWelch PCarr MCulp DLucht RAn outbreak of Cryptosporidium hominis infection at an Illinois recreational waterpark. Epidemiol Infect.2006;134:14756DOIExternal Web Site IconPubMedExternal Web Site Icon
  40. Gallas-Lindemann CSotiriadou IPlutzer JKaranis PPrevalence and distribution ofCryptosporidium and Giardia in wastewater and the surface, drinking and ground waters in the Lower Rhine, Germany. Epidemiol Infect2013;141:921DOIExternal Web Site IconPubMedExternal Web Site Icon

Figures

Tables

Technical Appendix

Suggested citation for this article: Widerström M, Schönning C, Lilja M, Lebbad M, Ljung T, Allestam G, et al. Large outbreak of Cryptosporidium hominis infection transmitted through the public water supply, Sweden. Emerg Infect Dis [Internet]. 2014 Apr [date cited].http://dx.doi.org/10.3201/eid2004.121415External Web Site Icon
DOI: 10.3201/eid2004.121415

No hay comentarios:

Publicar un comentario