viernes, 23 de mayo de 2014

Rapid Spread and Diversification of Respiratory Syncytial Virus Genotype ON1, Kenya - Volume 20, Number 6—June 2014 - Emerging Infectious Disease journal - CDC

full-text ►

Rapid Spread and Diversification of Respiratory Syncytial Virus Genotype ON1, Kenya - Volume 20, Number 6—June 2014 - Emerging Infectious Disease journal - CDC



link to Volume 20, Number 6—June 2014

Volume 20, Number 6—June 2014

Research

Rapid Spread and Diversification of Respiratory Syncytial Virus Genotype ON1, Kenya

Charles N. AgotiComments to Author , James R. Otieno, Caroline W. Gitahi, Patricia A. Cane, and D. James Nokes
Author affiliations: Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya (C.N. Agoti, J.R. Otieno, C.W. Gitahi, D.J. Nokes)Public Health England, London, UK (P.A. Cane)University of Warwick and WIDER, Coventry, UK (D.J. Nokes)

Abstract

Respiratory syncytial virus genotype ON1, which is characterized by a 72-nt duplication in the attachment protein gene, has been detected in >10 countries since first identified in Ontario, Canada, in 2010. We describe 2 waves of genotype ON1 infections among children admitted to a rural hospital in Kenya during 2012. Phylogenetic analysis of attachment protein gene sequences showed multiple introductions of genotype ON1; variants distinct from the original Canadian viruses predominated in both infection waves. The genotype ON1 dominated over the other group A genotypes during the second wave, and some first wave ON1 variants reappeared in the second wave. An analysis of global genotype ON1 sequences determined that this genotype has become considerably diversified and has acquired signature coding mutations within immunogenic regions, and its most recent common ancestor dates to ≈2008–2009. Surveillance of genotype ON1 contributes to an understanding of the mechanisms of rapid emergence of respiratory viruses.
Human respiratory syncytial virus (RSV) is the major viral cause of bronchiolitis and pneumonia in infants and also a major cause of severe respiratory illness in the elderly (1). RSV infection usually occurs in annual epidemics, and the virus can re-infect persons throughout life. RSV isolates fall into 2 groups, A and B, and each group includes multiple genotypes. RSV epidemics are often caused by several variants of >1 RSV genotypes, and the dominant genotype is usually replaced each year (2). RSV’s most variable protein, the attachment (G) glycoprotein, is also a target of protective antibody responses, and analysis of its encoding genome portion shows continuous accumulation of genetic changes leading to antigenic drift (3,4). However, as a nonsegmented, single-stranded RNA virus, RSV does not show the abrupt antigenic changes that are sometimes seen in influenza A viruses. The abrupt changes in influenza A viruses commonly arise when genome segments reassort, sometimes acquiring new surface protein genes from animal sources, leading to antigenic shift as was seen in the recent influenza A(H1N1) pandemic strain (5). Nevertheless, twice in recent years, a distinct new genotype of RSV has arisen as a result of duplication within the G gene. The first of these new genotypes was detected in 1999 when 3 group B viruses with a 60-nt duplication in the C-terminal region of the G gene, which encodes strain-specific epitopes (4), were isolated in Buenos Aires, Argentina (6). This genotype was also observed in a retrospective analysis of RSV samples from 1998 to 1999 in Madrid, Spain (7). This novel genotype spread rapidly and by 2003 was being detected around the world; by 2006, it had become the predominant group B genotype (7,8).
In December 2010, a novel RSV group A genotype, ON1, with a 72-nt duplication in the C-terminal region of the G gene, was detected in Ontario, Canada (9). This genotype was also detected in Malaysia, India, and South Korea at the end of 2011 (1012) and in Germany, Italy, South Africa, Japan, China, and Kenya in 2012 (1315) (GenBank, unpub. data). The emergence and spread of these new genotypes, which can be readily tracked by G gene sequencing, provide an opportunity to re-examine 1) the interconnectedness of RSV epidemics at various levels (e.g., global, country, and community levels), 2) the spatial–temporal scale of the spread of variants, and 3) the pace and nature of associated genetic changes. Such examinations have the potential to bring new insights regarding how RSV persists to cause recurrent epidemics in human populations.
We conducted a detailed analysis of G gene variability of the ON1 genotype viruses detected among children inpatients at a hospital in rural Kenya in 2012. Two RSV epidemics were observed during the year, and a wave of genotype ON1 cases occurred in each. We compare the phylogenetic relationship between the ON1 viruses detected in Kenya and ON1 viruses worldwide during a similar period.


Acknowledgments

We thank the parents and guardians of children participating in the study. We also thank the clinical and laboratory staff of the Kilifi Viral Epidemiology and Control group who obtained and processed the study specimens. The study is published with permission of director of the Kenya Medical Research Institute.
This work was supported by the Wellcome Trust (grant no. 084633).

References

  1. Collins PLMelero JAProgress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res2011;162:8099DOIExternal Web Site IconPubMedExternal Web Site Icon
  2. Cane PAMatthews DAPringle CRAnalysis of respiratory syncytial virus strain variation in successive epidemics in one city. J Clin Microbiol1994;32:14 .PubMedExternal Web Site Icon
  3. Cane PAPringle CREvolution of subgroup A respiratory syncytial virus: evidence for progressive accumulation of amino acid changes in the attachment protein. J Virol.1995;69:291825 .PubMedExternal Web Site Icon
  4. Melero JAGarcia-Barreno BMartinez IPringle CRCane PAAntigenic structure, evolution and immunobiology of human respiratory syncytial virus attachment (G) protein. J Gen Virol1997;78:24118 .PubMedExternal Web Site Icon
  5. Smith GJVijaykrishna DBahl JLycett SJWorobey MPybus OGOrigins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature.2009;459:11225DOIExternal Web Site IconPubMedExternal Web Site Icon
  6. Trento AGaliano MVidela CCarballal GGarcia-Barreno BMelero JAMajor changes in the G protein of human respiratory syncytial virus isolates introduced by a duplication of 60 nucleotides. J Gen Virol2003;84:311520DOIExternal Web Site IconPubMedExternal Web Site Icon
  7. Trento ACasas ICalderon AGarcia-Garcia MLCalvo CPerez-Brena PTen years of global evolution of the human respiratory syncytial virus BA genotype with a 60-nucleotide duplication in the G protein gene. J Virol2010;84:750012DOIExternal Web Site IconPubMedExternal Web Site Icon
  8. Trento AViegas MGaliano MVidela CCarballal GMistchenko ASNatural history of human respiratory syncytial virus inferred from phylogenetic analysis of the attachment (G) glycoprotein with a 60-nucleotide duplication. J Virol2006;80:97584DOIExternal Web Site IconPubMedExternal Web Site Icon
  9. Eshaghi ADuvvuri VRLai RNadarajah JTLi APatel SNGenetic variability of human respiratory syncytial virus A strains circulating in Ontario: a novel genotype with a 72 nucleotide G gene duplication. PLoS ONE2012;7:e32807DOIExternal Web Site IconPubMedExternal Web Site Icon
  10. Khor CSSam ICHooi PSChan YFDisplacement of predominant respiratory syncytial virus genotypes in Malaysia between 1989 and 2011. Infect Genet Evol.2013;14:35760DOIExternal Web Site IconPubMedExternal Web Site Icon
  11. Choudhary MLWadhwa BSJadhav SMChadha MS. Complete genome sequences of two human respiratory syncytial virus genotype A strains from India, RSV-A/NIV1114046/11 and RSV-A/NIV1114073/11. Genome Announc. 2013;1:e00165–13.External Web Site Icon
  12. Lee WJKim YJKim DWLee HSLee HYKim KComplete genome sequence of human respiratory syncytial virus genotype A with a 72-nucleotide duplication in the attachment protein G gene. J Virol2012;86:138101DOIExternal Web Site IconPubMedExternal Web Site Icon
  13. Tsukagoshi HYokoi HKobayashi MKushibuchi IOkamoto-Nakagawa RYoshida A,Genetic analysis of attachment glycoprotein (G) gene in new genotype ON1 of human respiratory syncytial virus detected in Japan. Microbiol Immunol2013;57:6559 .PubMedExternal Web Site Icon
  14. Prifert CStreng AKrempl CDLiese JWeissbrich BNovel respiratory syncytial virus A genotype, Germany, 2011–2012. Emerg Infect Dis2013;19:102930DOIExternal Web Site IconPubMedExternal Web Site Icon
  15. Valley-Omar ZMuloiwa RHu NCEley BHsiao NYNovel respiratory syncytial virus subtype ON1 among children, Cape Town, South Africa, 2012. Emerg Infect Dis.2013;19:66870DOIExternal Web Site IconPubMedExternal Web Site Icon
  16. Agoti CNGitahi CWMedley GFCane PANokes DJ. Identification of group B respiratory syncytial viruses that lack the 60-nucleotide duplication after six consecutive epidemics of total BA dominance at coastal Kenya. Influenza Other Respir Viruses. 2013;7:1008–12.External Web Site Icon
  17. Hammitt LLKazungu SMorpeth SCGibson DGMvera BBrent AJA preliminary study of pneumonia etiology among hospitalized children in Kenya. Clin Infect Dis2012;54(Suppl 2):S1909DOIExternal Web Site IconPubMedExternal Web Site Icon
  18. Nokes DJNgama MBett AAbwao JMunywoki PEnglish MIncidence and severity of respiratory syncytial virus pneumonia in rural Kenyan children identified through hospital surveillance. Clin Infect Dis2009;49:13419DOIExternal Web Site IconPubMedExternal Web Site Icon
  19. Munywoki PKHamid FMutunga MWelch SCane PNokes DJImproved detection of respiratory viruses in pediatric outpatients with acute respiratory illness by real-time PCR using nasopharyngeal flocked swabs. J Clin Microbiol2011;49:33657DOIExternal Web Site IconPubMedExternal Web Site Icon
  20. Scott PDOchola RNgama MOkiro EANokes DJMedley GFMolecular epidemiology of respiratory syncytial virus in Kilifi District, Kenya. J Med Virol2004t;74:34454DOIExternal Web Site IconPubMedExternal Web Site Icon
  21. Agoti CNMwihuri AGSande CJOnyango COMedley GFCane PAGenetic relatedness of infecting and reinfecting respiratory syncytial virus strains identified in a birth cohort from rural Kenya. J Infect Dis2012;206:153241DOIExternal Web Site IconPubMedExternal Web Site Icon
  22. Katoh KToh HRecent developments in the MAFFT multiple sequence alignment program. Brief Bioinform2008;9:28698DOIExternal Web Site IconPubMedExternal Web Site Icon
  23. Tamura KPeterson DPeterson NStecher GNei MKumar SMEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol2011;28:27319DOIExternal Web Site IconPubMedExternal Web Site Icon
  24. Drummond AJRambaut ABEAST: Bayesian evolutionary analysis by sampling trees.BMC Evol Biol2007;7:214DOIExternal Web Site IconPubMedExternal Web Site Icon
  25. Botosso VFZanotto PMUeda MArruda EGilio AEVieira SEPositive selection results in frequent reversible amino acid replacements in the G protein gene of human respiratory syncytial virus. PLoS Pathog2009;5:e1000254DOIExternal Web Site IconPubMedExternal Web Site Icon
  26. Woelk CHHolmes ECVariable immune-driven natural selection in the attachment (G) glycoprotein of respiratory syncytial virus (RSV). J Mol Evol2001;52:18292 .PubMedExternal Web Site Icon
  27. Palomo CCane PAMelero JAEvaluation of the antibody specificities of human convalescent-phase sera against the attachment (G) protein of human respiratory syncytial virus: influence of strain variation and carbohydrate side chains. J Med Virol.2000;60:46874DOIExternal Web Site IconPubMedExternal Web Site Icon
  28. Zlateva KTLemey PVandamme AMVan Ranst MMolecular evolution and circulation patterns of human respiratory syncytial virus subgroup A: positively selected sites in the attachment G glycoprotein. J Virol2004;78:467583DOIExternal Web Site IconPubMedExternal Web Site Icon
  29. Cane P. Molecular epidemiology and evolution of RSV. In: Cane P, editor. Respiratory syncytial virus. Amsterdam: Elsevier; 2007. p. 89–113.
  30. Medley GFNokes DJDoes viral diversity matter? Science2009;325:2745DOIExternal Web Site IconPubMedExternal Web Site Icon
  31. Cane PAAnalysis of linear epitopes recognised by the primary human antibody response to a variable region of the attachment (G) protein of respiratory syncytial virus.J Med Virol1997;51:297304DOIExternal Web Site IconPubMedExternal Web Site Icon
  32. van Niekerk SVenter MReplacement of previously circulating respiratory syncytial virus subtype B strains with the BA genotype in South Africa. J Virol2011;85:878997 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  33. Auksornkitti VKamprasert NThongkomplew SSuwannakarn KTheamboonlers A,Samransamruajkij RMolecular characterization of human respiratory syncytial virus, 2010–2011: identification of genotype ON1 and a new subgroup B genotype in Thailand.Arch Virol2014;159:499507DOIExternal Web Site IconPubMedExternal Web Site Icon
  34. Balmaks RRibakova IGardovska DKazaks A. Molecular epidemiology of human respiratory syncytial virus over three consecutive seasons in Latvia. J Med Virol. 2013.Epub 2013 Dec 2.External Web Site Icon
  35. Panayiotou CRichter JKoliou MKalogirou NGeorgiou EChristodoulou C.Epidemiology of respiratory syncytial virus in children in Cyprus during three consecutive winter seasons (2010–2013): age distribution, seasonality and association between prevalent genotypes and disease severity. Epidemiol Infect2014;24:16DOIExternal Web Site IconPubMedExternal Web Site Icon

Figures

Tables

Technical Appendix

Suggested citation for this article: Agoti CN, Otieno JR, Gitahi CW, Cane PA, Nokes DJ. Rapid spread and diversification of respiratory syncytial virus genotype ON1, Kenya. Emerg Infect Dis. 2014 June [date cited]. http://dx.doi.org/10.3201/eid2006.131438External Web Site Icon
DOI: 10.3201/eid2006.131438

No hay comentarios:

Publicar un comentario